Измерение давления.

Методы преобразования давления
Датчик давления состоит (рис.1) из первичного преобразователя давления, в составе которого чувствительный элемент и приемник давления, схемы вторичной обработки сигнала, различных по конструкции корпусных деталей и устройства вывода. Основным отличием одних приборов от других является точность регистрации давления, которая зависит от принципа преобразования давления в электрический сигнал: тензометрический, пьезорезистивный, емкостной, индуктивный, резонансный, ионнизационный.


Рис.1 Блок-схема преобразователя давления в электричекий сигнал

Тензометрический метод
В настоящее время основная масса датчиков давления в нашей стране выпускаются на основе чувствительных элементов (рис.2), принципом которых является измерение деформации тензорезисторов, сформированных в эпитаксиальной пленке кремния на подложке из сапфира (КНС), припаянной твердым припоем к титановой мембране. Иногда вместо кремниевых тензорезисторов используют металлические: медные, никелевые, железные и др.


Рис.2 Упрощенный вид тензорезистивного чувствительного элемента

Принцип действия тензопреобразователей основан на явлении тензоэффекта в материалах. Чувствительным элементом служит мембрана с тензорезисторами, соединенными в мостовую схему. Под действием давления измеряемой среды мембрана прогибается, тензорезисторы меняют свое сопротивление, что приводит к разбалансу моста Уитстона. Разбаланс линейно зависит от степени деформации резисторов и, следовательно, от приложенного давления.
Следует отметить принципиальное ограничение КНС преобразователя – неустранимую временную нестабильность градуировочной характеристики и существенные гистерезисные эффекты от давления и температуры. Это обусловлено неоднородностью конструкции и жесткой связью мембраны с конструктивными элементами датчика. Поэтому, выбирая преобразователь на основе КНС, необходимо обратить внимание на величину основной погрешности с учетом гистерезиса и величину дополнительной погрешности.
К преимуществам можно отнести хорошую защищенность чувствительного элемента от воздействия любой агрессивной среды, налаженное серийное производство, низкую стоимость.

Пьезорезистивный метод
Практически все производители датчиков в России проявляют живой интерес к использованию интегральных чувствительных элементов на основе монокристаллического кремния. Это обусловлено тем, что кремниевые преобразователи имеют на порядок большую временную и температурную стабильности по сравнению с приборами на основе КНС структур.
Кремниевый интегральный преобразователь давления (ИПД, рис.3) представляет собой мембрану из монокристаллического кремния с диффузионными пьезорезисторами, подключенными в мост Уинстона. Чувствительным элементом служит кристалл ИПД, установленный на диэлектрическое основание с использованием легкоплавкого стекла или методом анодного сращивания.


Рис.3 Кремниевый интегральный преобразователь давления

Для измерения давления чистых неагрессивных сред применяются, так называемые, Low cost – решения (рис.4), основанные на использовании чувствительных элементов либо без защиты, либо с защитой силиконовым гелем.


Рис. 4 Low Cost решение для пьезорезистивных чувствительных элементов с использованием защитного покрытия

Для измерения агрессивных сред и большинства промышленных применений применяется преобразователь давления в герметичном металло-стеклянном корпусе, с разделительной диафрагмой из нержавеющей стали, передающей давление измеряемой среды на ИПД посредством кремнийорганической жидкости (рис.5).


Рис.5 Преобразователь давления защищенный от измеряемой среды посредством коррозионно-стойкой мембраны

Основным преимуществом пьезорезистивных дачткиков является более высокая стабильность характеристик, по сравнению с КНС преобразователями. ИПД на основе монокристаллического кремния устойчивы к воздействию ударных и знакопеременных нагрузок. Если не происходит механического разрушения чувствительного элемента, то после снятия нагрузки он возвращается к первоначальному состоянию, что объясняется использованием идеально-упругого материала.

Емкостной метод
Емкостные преобразователи используют метод изменения емкости конденсатора при изменении расстояния между обкладками. Известны керамические или кремниевые емкостные первичные преобразователи давления и преобразователи, выполненные с использованием упругой металлической мембраны. При изменении давления мембрана с электродом деформируется и происходит изменение емкости.
В элементе из керамики или кремния, пространство между обкладками обычно заполнено маслом или другой органической жидкостью (рис.6).


Рис.6 Емкостной керамический преобразователь давления, выполненый методами микромеханики

При использовании металлической диафрагмы (рис.7) ячейка делится на две части, с одной стороны которой расположены электроды. Электроды с диафрагмой образуют две переменные емкости, включенные в плечи измерительного моста. Когда давление по обеим сторонам одинаково, мост сбалансирован. Изменение давления в одной из камер приводит к деформации мембраны, что изменяет емкости, разбалансируя мост. В настоящее время сенсоры изготавливаются с электродами, расположенными с одной стороны от диафрагмы. Газ будет контактировать только с камерой, выполненной из нержавеющей стали или инконеля. Это позволяет проводить измерения давления загрязненных, агрессивных, радиоактивных газов и смесей неизвестного состава. В абсолютной модели опорное давление составляет 10-7 – 10-8 мм рт.ст., которое поддерживается в течение длительного времени химическим геттером.


Рис.7 Емкостной преобразователь давления.

В данном варианте роль подвижной обкладки конденсатора выполняет металлическая диафрагма
Достоинством чувствительного емкостного элемента является простота конструкции, высокая точность и временная стабильность, возможность измерять низкие давления и слабый вакуум.
К недостатку можно отнести нелинейную зависимость емкости от приложенного давления.

Резонансный метод
Резонансный принцип используется в датчиках давления на основе вибрирующего цилиндра, струнных датчиках, кварцевых датчиках, резонансных датчиках на кремнии. В основе метода лежат волновые процессы: акустические или электромагнитные. Это и объясняет высокую стабильность датчиков и высокие выходные характеристики прибора.
Частным примером может служить кварцевый резонатор (рис.8). При прогибе мембраны, происходит деформация кристалла кварца, подключенного в электрическую схему и его поляризация. В результате изменения давления частота колебаний кристалла меняется. Подобрав параметры резонансного контура, изменяя емкость конденсатора или индуктивность катушки, можно добиться того, что сопротивление кварца падает до нуля – частоты колебаний электрического сигнала и кристалла совпадают - наступает резонанс.


Рис.8 Упрощенный вид резонансного чувствительного элемента, выполненного на кварце.

Преимуществом резонансных датчиков является высокая точность и стабильность характеристик, которая зависит от качества используемого материала.
К недостаткам можно отнести индивидуальную характеристику преобразования давления, значительное время отклика, не возможность проводить измерения в агрессивных средах без потери точности показаний прибора.

Индуктивный метод
Индукционный способ основан на регистрации вихревых токов (токов Фуко). Чувствительный элемент состоит из двух катушек, изолированных между собой металлическим экраном (рис.9). Преобразователь измеряет смещение мембраны при отсутствии механического контакта. В катушках генерируется электрический сигнал переменного тока таким образом, что заряд и разряд катушек происходит через одинаковые промежутки времени. При отклонении мембраны создается ток в фиксированной основной катушке, что приводит к изменению индуктивности системы. Смещение характеристик основной катушки дает возможность преобразовать давление в стандартизованный сигнал, по своим параметрам прямо пропорциональный приложенному давлению.


Рис. 9 Принципиальная схема индукционного преобразователя давления

Преимуществом такой системы, является возможность измерения низких избыточных и дифференциальных давлений, достаточно высокая точность и незначительная температурная зависимость.
Однако датчик чувствителен к магнитным воздействиям, что объясняется наличием катушек, которые при прохождении переменного сигнала создают магнитное поле.

Ионизационный метод
В основе лежит принцип регистрации потока ионизированных частиц. Аналогом являются ламповые диоды (рис.10).



Рис.10 Ионнизацинный датчик вакуума

Лампа оснащена двумя электродами: катодом и анодом, - а также нагревателем. В некоторых лампах последний отсутствует, что связано с использованием более совершенных материалов для электродов. Корпус лампы выполнен из высококачественного стекла.
Преимуществом таких лам является возможность регистрировать низкое давление – вплоть до глубокого вакуума с высокой точностью. Однако следует строго учитывать, что подобные приборы нельзя эксплуатировать, если давление в камере близко к атмосферному. Поэтому подобные преобразователи необходимо сочетать с другими датчиками давления, например, емкостными. Помимо прочего, ионизационные лампы должны оснащаться дополнительными приборами, поскольку зависимость сигнала от давления является логарифмической.

Подводя итог, приведем основные достоинства и недостатки различных методов преобразования давления в электрический сигнал:

Используются технологии uCoz