емпературные шкалы,
системы сопоставимых числовых значений температуры. температура не является непосредственно измеряемой величиной; её значение определяют по температурному изменению какого-либо удобного для измерения физического свойства термометрического вещества (см. Термометрия). Выбрав термометрическое вещество и свойство, необходимо задать начальную точку отсчёта и размер единицы температуры - градуса. Таким образом определяют эмпирические Т. ш. В Т. ш. обычно фиксируют две основные температуры, соответствующие точкам фазовых равновесий однокомпонентных систем (так называемые реперные или постоянные точки), расстояние между которыми называется основным температурным интервалом шкалы. В качестве реперных точек используют: тройную точку воды, точки кипения воды, водорода и кислорода, точки затвердевания серебра, золота и др. Размер единичного интервала (единицы температуры) устанавливают как определённую долю основного интервала. За начало отсчёта Т. ш. принимают одну из реперных точек. Так можно определить эмпирическую (условную) Т. ш. по любому термометрическому свойству х. Если принять, что связь между х и температурой t линейна, то температура tx= n (xt - х0) / (xn - x0), где xt, x0 и xn - числовые значения свойства х при температуре t в начальной и конечной точках основного интервала, (xn - x0) / n - размер градуса, п - число делений основного интервала.

В Цельсия шкале, например, за начало отсчёта принята температура затвердевания воды (таяния льда), основной интервал между точками затвердевания и кипения воды разделён на 100 равных частей (n = 100).

Т. ш. представляет собой, таким образом, систему последовательных значений температуры, связанных линейно со значениями измеряемой физической величины (эта величина должна быть однозначной и монотонной функцией температуры). В общем случае Т. ш. могут различаться по термометричкому свойству (им может быть тепловое расширение тел, изменение электрического сопротивления проводников с температурой и т. п.), по термометрическому веществу (газ, жидкость, твёрдое тело), а также зависеть от реперных точек. В простейшем случае Т. ш. различаются числовыми значениями, принятыми для одинаковых реперных точек. Так, в шкалах Цельсия (°С), Реомюра (°R) и Фаренгейта (°F) точкам таяния льда и кипения воды при нормальном давлении приписаны разные значения температуры. Соотношение для пересчёта температуры из одной шкалы в другую:

n °C = 0,8n°R = (1,8n+32) °F.

Непосредственный пересчёт для Т. ш., различающихся основными температурами, без дополнительных экспериментальных данных невозможен. Т. ш., различающиеся по термометрическому свойству или веществу, существенно различны. Возможно неограниченное число не совпадающих друг с другом эмпирических Т. ш., так как все термометрические свойства связаны с температурой нелинейно и степень нелинейности различна для разных свойств и вещественную температуру, измеренную по эмпирической Т. ш., называют условной ("ртутная", "платиновая" температура и т. д.), её единицу - условным градусом. Среди эмпирических Т. ш. особое место занимают газовые шкалы, в которых термометрическим веществом служат газы ("азотная", "водородная", "гелиевая" Т. ш.). Эти Т. ш. меньше других зависят от применяемого газа и могут быть (введением поправок) приведены к теоретической газовой Т. ш. Авогадро, справедливой для идеального газа (см. Газовый термометр). Абсолютной эмпирической Т. ш. называют шкалу, абсолютный нуль которой соответствует температуре, при которой численное значение физического свойства х = 0 (например, в газовой Т. ш. Авогадро абсолютный нуль температуры соответствует нулевому давлению идеального газа). температуры t (x)(по эмпирической Т. ш.) и Т (Х) (по абсолютной эмпирической Т. ш.) связаны соотношением T (X)=t (x)+T0(x), где T0(x - абсолютный нуль эмпирической Т. ш. (введение абсолютного нуля является экстраполяцией и не предполагает его реализации).

Принципиальный недостаток эмпирической Т. ш. - их зависимость от термометрического вещества - отсутствует у термодинамической Т. ш., основанной на втором начале термодинамики. При определении абсолютной термодинамической Т. ш. (шкала Кельвина) исходят из Карно цикла. Если в цикле Карно тело, совершающее цикл, поглощает теплоту Q1 при температуре T1 и отдаёт теплоту Q2 при температуре Т2, то отношение T1 / T2 = Q1 / Q2 не зависит от свойств рабочего тела и позволяет по доступным для измерений величинам Q1 и Q2 определять абсолютную температуру. Вначале основной интервал этой шкалы был задан точками таяния льда и кипения воды при атмосферном давлении, единица абсолютной температуры соответствовала части основного интервала, за начало отсчёта была принята точка таяния льда. В 1954 Х Генеральная конференция по мерам и весам установила термодинамическую Т. ш. с одной реперной точкой - тройной точкой воды, температура которой принята 273,16 К (точно), что соответствует 0,01 °С. температура Т в абсолютной термодинамической Т. ш. измеряется в кельвинах (К). Термодинамическая Т. ш., в которой для точки таяния льда принята температура t = 0 °С, называется стоградусной. Соотношения между температурами, выраженными в шкале Цельсия и абсолютной термодинамической Т. ш.:

TK = t °C + 273,15K, nK= n °C,

так что размер единиц в этих шкалах одинаков. В США и некоторых др. странах, где принято измерять температуру по шкале Фаренгейта, применяют также абсолютную Т. ш. Ранкина. Соотношение между кельвином и градусом Ранкина: nK = 1,8n °Ra, по шкале Ранкина точка таяния льда соответствует 491,67 °Ra, точка кипения воды 671,67 °Ra.

Любая эмпирическая Т. ш. приводится к термодинамической Т. ш. введением поправок, учитывающих характер связи термометрического свойства с термодинамической температурой. Термодинамическая Т. ш. осуществляется не непосредственно (проведением цикла Карно с термометрическим веществом), а с помощью других процессов, связанных с термодинамической температурой. В широком интервале температур (примерно от точки кипения гелия до точки затвердевания золота) термодинамические Т. ш. совпадают с Т. ш. Авогадро, так что термодинамическую температуру определяют по газовой, которую измеряют газовым термометром. При более низких температурах термодинамическая Т. ш. осуществляется по температурной зависимости магнитной восприимчивости парамагнетиков (см. Низкие температуры), при более высоких - по измерениям интенсивности излучения абсолютно чёрного тела (см. Пирометрия). Осуществить термодинамическую Т. ш. даже с помощью Т. ш. Авогадро очень сложно, поэтому в 1927 была принята Международная практическая температурная шкала (МПТШ), которая совпадает с термодинамической Т. ш. с той степенью точности, которая экспериментально достижима. Все приборы для измерения температуры градуированы в МПТШ.

Первый термометр был изобретён Галилео Галилеем (1564 - 1642) и представлял собой газовый термометр.

Рис. 1.1.
Газовый термометр постоянного объема
1 - сосуд с газом, 2 - соединительные трубки,
3- манометр, 4 - постоянный уровень

Газовый термометр постоянного объёма (см. рис. 1.1) состоит из термометрического тела - порции газа, заключенной в сосуд, соединенный с помощью трубки с манометром. Измеряемая физическая величина (термометрический признак), обеспечивающая определение температуры, - давление газа при некотором фиксированном объёме. Постоянство объёма достигается тем, что вертикальным перемещением левой трубки уровень в правой трубке манометра доводится до одного и того же значения (опорной метки) и в этот момент производится измерения разности высот уровней жидкости в манометре. Учет различных поправок (например, теплового расширения стеклянных деталей термометра, адсорбции газа и т.д.) позволяет достичь точности измерения температуры газовым термометром постоянного объема, равной одной тысячной кельвина.
Газовые термометры имеют то преимущество, что температура, определяемая с их помощью, при малых плотностях газа не зависит от природы используемого газа, а шкала газового термометра - хорошо совпадает с абсолютной шкалой температур (о ней подробно будет сказано ниже). Во второй главе мы подробнее опишем идеально-газовый термометр, определяющий абсолютную шкалу температур.
Газовые термометры используют для градуировки других видов термометров, например, жидкостных. Они более удобны на практике, однако, шкала жидкостного термометра, проградуированного по газовому, оказывается, как правило, неравномерной. Это связано с тем, что плотность жидкостей нелинейным образом зависит от их температуры.
Жидкостной термометр - это наиболее часто используемый в обыденной жизни термометр, основанный на изменении объёма жидкости при изменении её температуры. В ртутно-стеклянном термометре термометрическим телом является ртуть, помещенная в стеклянный баллон с капилляром. Термометрическим признаком является расстояние от мениска ртути в капилляре до произвольной фиксированной точки. Ртутные термометры используют в диапазоне температур от -35 oC до нескольких сотен градусов Цельсия. При высоких температурах (свыше 300 oC) в капилляр накачивают азот (давление до 100 атм или 107 Па), чтобы воспрепятствовать кипению ртути. Применение в жидкостном термометре вместо ртути таллия позволяет существенно понизить нижнюю границу измерения температуры до -59 oC.
Другими видами широко распространённых жидкостных термометров являются спиртовой (от -80 oC до +80 oC) и пентановый (от -200 oC до +35 oC). Отметим, что воду нельзя применять в качестве термометрического тела в жидкостном термометре: объём воды с повышением температуры сначала падает, а потом растёт, что делает невозможным использование объема воды в качестве термометрического признака.
С развитием измерительной техники, наиболее удобными техническими видами термометров стали те, в которых термометрическим признаком является электрический сигнал. Это термосопротивления (металлические и полупроводниковые) и термопары.
В металлическом термометре сопротивления измерение температуры основано на явлении роста сопротивления металла с ростом температуры. Для большинства металлов вблизи комнатной температуры эта зависимость близка к линейной, а для чистых металлов относительное изменение их сопротивления при повышении температуры на 1 К (температурный коэффициент сопротивления) имеет величину близкую к 4*10-3 1/К. Термометрическим признаком является электрическое сопротивление термометрического тела - металлической проволоки. Чаще всего используют платиновую проволоку, а также медную проволоку или их различные сплавы. Диапазон применения таких термометров от водородных температур (~20 К) до сотен градусов Цельсия. При низких температурах в металлических термометрах зависимость сопротивления от температуры становится существенно нелинейной, и термометр требует тщательной калибровки.
В полупроводниковом термометре сопротивления (термисторе) измерение температуры основано на явлении уменьшения сопротивления полупроводников с ростом температуры. Так как температурный коэффициент сопротивления полупроводников по абсолютной величине может значительно превосходить соответствующий коэффициент металлов, то и чувствительность таких термометров может значительно превосходить чувствительность металлических термометров.
Специально изготовленные полупроводниковые термосопротивления могут быть использованы при низких (гелиевых) температурах порядка нескольких кельвин. Однако следует учитывать то, что в обычных полупроводниковых сопротивлениях возникают дефекты, обусловленные воздействием низких температур. Это приводит к ухудшению воспроизводимости результатов измерений и требует использования в термосопротивлениях, специально подобранных полупроводниковых материалов.
Другой принцип измерения температуры реализован в термопарах. Термопара представляет собой электрический контур, спаянный из двух различных металлических проводников, один спай которых находится при измеряемой температуре (измерительный спай), а другой (свободный спай) - при известной температуре, например, при комнатной температуре. Из-за разности температур спаев возникает электродвижущая сила (термо-ЭДС), измерение которой позволяет определять разность температур спаев, а, следовательно, температуру измерительного спая.
В таком термометре термометрическим телом является спай двух металлов, а термометрическим признаком - возникающая в цепи термо-ЭДС. Чувствительность термопар составляет от единиц до сотен мкВ/К, а диапазон измеряемых температур от нескольких десятков кельвин (температуры жидкого азота) до полутора тысяч градусов Цельсия. Для высоких температур применяются термопары из благородных металлов. Наибольшее применение нашли термопары на основе спаев следующих материалов: медь-константан, железо-константан, хромель-алюмель, платинородий-платина.
Следует отметить, что термопара способна измерить только разность температур измерительного и свободного спаев. Свободный спай находится, как правило, при комнатной температуре. Поэтому для измерения температуры термопарой необходимо использовать дополнительный термометр для определения комнатной температуры или систему компенсации изменения температуры свободного спая.
В радиотехнике часто применяют понятие шумовой температуры, равной температуре, до которой должен быть нагрет резистор, согласованный с входным сопротивлением электронного устройства, чтобы мощность тепловых шумов этого устройства и резистора были равными в определенной полосе частот. Возможность введения такого понятия обусловлена пропорциональностью средней мощности шума (среднего квадрата шумового напряжения на электрическом сопротивлении) абсолютной температуре сопротивления. Это позволяет использовать шумовое напряжение в качестве термометрического признака для измерения температуры. Шумовые термометры используются для измерения низких температур (ниже нескольких кельвинов), а также в радиоастрономии для измерения радиационной (яркостной) температуры космических объектов.

Используются технологии uCoz